

INDEX

Index 1

Kalvium Program Scheme 2

Assessment model 5

Detailed Course Syllabus & Assessment Plan 6

Semester 1 6

Front-end web development 6

Critical thinking 101 8

Discrete Mathematics 9

Professional skills for the workplace 11

The breadth of computer science 1 12

Problem solving using programming 14

Design for developers 16

Semester 2 18

Learning how to learn 18

The breadth of computer science 2 19

Back-end Web Development 21

Databases 23

Full Stack Web Development 25

Semester 3 27

Economics, Politics and Rural Society Development 27

Mathematical thinking 101 29

Database Management Systems 32

Object Oriented Programming 34

Semester 4 36

How Human Languages work 36

Tools and techniques for creative thinking 37

Operating Systems 39

Data Structure and Algorithms 41

Semester 5 43

English LSRW 43

Principles of Science 45

Computer Organization & Architecture 49

Formal Language & Automata Theory 51

Design & Analysis of Algorithms 53

Semester 6 56

Discovering Self 56

 Fundamentals of Business Management 59

Compiler Design 61

Computer Networks 64

Semester 7 66

Introduction to Philosophy 66

Electives 67

Semester 8 68

Skilling Elective 68

Assessment plan for Integrated Work 68

Kalvium Program Scheme

The scheme details courses under 4 different cores.

1. Foundation - A set of courses designed taking a liberal approach to help students

develop crucial 21st-century skills.

2. Skilling - Courses oriented toward software engineering-readiness, that start with

basic programming eventually lead to high-level product development.

3. Academic - Courses designed to inculcate strong foundational knowledge in

computer science, these courses are thoughtfully crafted to impart the concepts, their

applications, and practical labs associated with them.

4. Integrated Work - Relevant (paid) work experience in global tech companies where

students gain real-world application development expertise, workplace exposure, and

industry-ready skills.

Semester 1

Core Course Name Credits

Skilling Front-end web development 4

Foundation Critical thinking 101 4

Academic Discrete Mathematics 4

Foundation Professional skills for the workplace 3

Academic The breadth of computer science 1 4

Skilling Problem solving using programming 4

Academic Design for developers 3

 26

Semester 2

Core Course Name Credits

Foundation Learning how to learn 4

Academic The breadth of computer science 2 4

Skilling Full Stack Web Development 12

 20

Semester 3

Core Course Name Credits

Foundation
Economics, Politics and Rural Society

Development
3

Foundation Mathematical thinking 101 4

Academic Database Management Systems 5

Academic Object Oriented Programming 4

Integrated Work
Integrated work with a partner

company
8

 24

Semester 4

Core Course Name Credits

Foundation How human languages work? 4

Foundation
Tools and techniques for creative

thinking
4

Academic Operating Systems 4

Academic Data Structure and Algorithms 4

Integrated Work
Integrated work with a partner

company
8

 24

Semester 5

Core Course Name Credits

Foundation English LSRW 3

Foundation Principles of Science 4

Academic Computer Organization & Architecture 4

Academic Formal Language & Automata Theory 4

Academic Design & Analysis of Algorithms 3

Integrated Work
Integrated work with a partner

company
8

 26

Semester 6

Core Course Name Credits

Foundation Discovering Self 3

Foundation
Fundamentals of Business

Management
3

Academic Compiler Design 4

Academic Computer Networks 4

Integrated Work
Integrated work with a partner

company
8

 22

Semester 7

Core Course Name Credits

Foundation Introduction to philosophy 3

Foundation Foundation Elective 3

Academic Academic Elective #1 4

Academic Academic Elective #2 4

Integrated Work
Integrated work with a partner

company
8

 22

Semester 8

Core Course Name Credits

Skilling Skilling Elective 4

Integrated Work
Integrated work with a partner

company
16

 20

Assessment model

At Kalvium, we strongly believe in the effectiveness of continuous evaluation/ assessment

as a way to improve learning outcomes and ensure students are retaining knowledge over

time. Research has shown that frequent assessments, such as quizzes and assignments/

projects, can help reinforce learning and improve long-term retention (Roediger III and

Karpicke, 2006). Furthermore, continuous evaluation allows for timely feedback and

opportunities for students to address any areas where they may be struggling, resulting in

better overall performance (Freeman et al., 2014).

That's why, at Kalvium, we have implemented a continuous evaluation model for all of our

courses that includes regular assessments and projects throughout the semester. This

approach enables us to better support our students' learning and ensure they are well-

prepared for future challenges.

You will see this practically executed as each course having anywhere between 3-6

continuous assessments spread through the duration of the course, with each assessment

carrying a specific weightage. The details of those are covered in the Assessment plan

section under Detailed Course Syllabus and Assessment Plan.

Detailed Course Syllabus & Assessment Plan

Semester 1

Front-end web development

Introduction

In this course, students will learn the fundamentals of front-end web development, including

HTML, CSS, JavaScript, and React JS. They will learn how to create responsive and

dynamic web pages, as well as develop their problem-solving and critical thinking skills. The

course will focus on hands-on projects and exercises to give students practical experience in

front-end web development.

Course outcomes

At the end of this course, students will be able:

1. To develop proficiency in HTML, CSS, and JavaScript, and apply them to the

development of interactive and responsive web pages.

2. To design and implement web pages that are accessible, user-friendly, and

optimized for search engines.

3. To create and use reusable code components to improve productivity and

maintainability.

4. To demonstrate an understanding of the principles of web design and user

experience, and apply them to front-end development.

5. To use debugging tools and techniques to identify and fix errors in web applications.

6. To work collaboratively and effectively in a team environment on web development

projects.

Syllabus

Unit 1 HTML, CSS & JS first steps

Environment set up, Introduction to HTML, HTML Block Elements, HTML Inline Elements,

HTML Forms, Introduction to CSS, CSS Font & Text, CSS Selectors, CSS Inheritance, CSS

Colors, Box Model, Flex Box, JS DOM, Introduction to JS, JS Variables, JS Data Types,

Basics of JS Operators, Basics of JS Strings, Basics of JS Conditional Statements, Basics of

JS Control Statements, Basics of JS Arrays, Basics of JS Functions, Basics of JS Objects

Unit 2 – HTML, CSS & JS Deep dive Part 1

CSS Advanced Selectors, CSS Positioning, Advanced Flexbox, CSS Grids, Responsive

Design, JS Operators, JS Strings, JS Conditional Statements, JS Control Statements, JS

Arrays & Functions, JS Objects

Unit 3 HTML, CSS & JS Deep dive Part 2

JS Advanced Functions, JS Nested Data Structures, JS Higher Order Functions, JS Event

Handling, Object Oriented JS, JS Closure, JS Storage, CSS Transition, CSS Animation

Unit 4 JS the hard parts

JS Prototypal Inheritance, JS Async, JS Callbacks, JS Promises, JS APIs, JS Axios, Unit

testing in JS, Deployment

Unit 5 React first steps

Environment set up, Introduction to React, Props & State, Components, React App using

Babel, Rendering lists of data, JSX, Hooks, Additional Hooks, Event Handling, Component

Lifecycle, Class based components, Routing

Unit 6 React deep dive

React Forms, Fetching Data from API, Redux, React Redux, Redux Toolkit, React CSS

Library, Material-ui

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Project-based 20

Continuous assessment - 2 Project-based 20

Continuous assessment - 3 Project-based 20

Continuous assessment - 4 Project-based 20

Continuous assessment - 5 Project-based 20

Text book(s)

1. Web development: This book includes: Web development for Beginners in HTML +

Web design with CSS + Javascript basics for Beginners; Andy Vickler; Ladoo

Publishing LLC (24 May 2021)

2. The Road to Learn React: Your Journey to Master Plain Yet Pragmatic React.Js;

Robin Wieruch; Zaccheus Entertainment (1 January 2018)

Reference book(s)

1. HTML, CSS, and JavaScript All in One; Julie C. Meloni & Jennifer Kyrnin; Pearson

Education; Third edition

2. React and React Native: A complete hands-on guide to modern web and mobile

development with React.js; Adam Boduch & Roy Derks; Packt Publishing Limited;

3rd edition

Critical thinking 101

Introduction

Critical Thinking is a course designed to introduce students to the concepts of reasoning and

decision-making, and to the cognitive biases and heuristics that can impede accurate and

rational thinking. Based on the seminal book "Thinking, Fast and Slow" by Daniel

Kahneman, the course will equip students with the skills to recognize and avoid common

thinking errors, and to think more critically and effectively.

Course outcomes

At the end of this course, the students will be able:

1. To describe the cognitive biases and heuristics that can affect human reasoning, and

explain how they can lead to thinking errors.

2. To recognize and identify common thinking errors and fallacies in everyday

situations.

3. To apply critical thinking skills to analyze and evaluate arguments and evidence.

4. To synthesize ideas and perspectives from different sources to develop reasoned

and well-supported arguments.

5. To evaluate the reliability and validity of different sources of information and

evidence.

6. To communicate critical thinking ideas and solutions clearly and effectively, both

orally and in writing.

Syllabus

Unit 1 – The two systems of thinking

Why think critically, The two systems of thinking, The mental power unit, The lazy system,

The marvels of priming, Cognitive ease, Norms, surprises and ease, How judgements work,

Jumping to conclusions

Unit 2 – Heuristics and biases

The law of small numbers, Anchoring effect, Availability bias, Representativeness bias,

Conjunction fallacy, Survivorship bias, Sunk cost fallacy, Confirmation bias, Google effect

and other common biases

Unit 3 – Critical thinking in action

Assignments on identifying biases in the news, creating fake news, writing an unbiased

review, alien travel guide, facts vs opinion, worst case scenarios, hypothetical scenarios

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Subjective assessment using
case studies

20

Continuous assessment - 2 Subjective assessment using
case studies

20

Continuous assessment - 3 Multiple-choice test 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Multiple-choice test 20

Text book(s)

Thinking, Fast and Slow; Daniel Kahneman; Penguin 2012 edition

Reference book(s)

Critical Thinking; Jonathan Haber; The MIT Press; Illustrated edition (7 April 2020)

Discrete Mathematics

Introduction

Discrete Mathematics is a foundational course for computer science students that introduces

the mathematical concepts and techniques essential to computer science. The course

covers topics such as logic, sets, functions, relations, combinatorics, graph theory, and

number theory. It emphasizes problem-solving, critical thinking, and effective communication

of mathematical ideas. Discrete Mathematics provides the mathematical foundation for

further study in algorithms, data structures,and other areas of computer science.

Course outcomes

At the end of this course, the students will be able:

1. To explain the fundamental concepts and principles of discrete mathematics,

including logic, sets, functions, and relations.

2. To apply discrete mathematics concepts to solve problems in computer science.

3. To analyze and evaluate the correctness and efficiency of algorithms, and the validity

and soundness of logical arguments.

4. To synthesize discrete mathematics concepts to create mathematical models for

real-world problems, such as scheduling and network optimization.

5. To evaluate the strengths and limitations of various discrete mathematics techniques,

and make informed decisions about which approach to use in a given context.

6. To communicate mathematical ideas and solutions clearly and effectively, both orally

and in writing.

Syllabus

Unit 1 Proofs

Introduction and Proofs, Induction, Strong Induction, Number Theory

Unit 2 Structures

Graph theory and Colouring, Matching Problems, Minimum Spanning Tree, Communication

Networks, Directed graphs, Relations and partial orders, State machines

Unit 3 Counting - Part 1

Sums, asymptotics, Divide and Conquer Recurrences, Linear Recurrences

Unit 4 Counting - Part 2

Counting Rules, Generating functions, Infinite sets

Unit 5 Probability Part 1

Introduction to Probability, Conditional Probability, Independence, Random variables

Unit 6 Probability Part 2

Expectations, Deviations, Random Walks

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Multiple-choice 20

Continuous assessment - 2 Multiple-choice 20

Continuous assessment - 3 Multiple-choice 20

Continuous assessment - 4 Multiple-choice 20

Continuous assessment - 5 Multiple-choice 20

Text book(s)

Mathematics for Computer Science; Eric Lehman, F Thomson Leighton, Albert R Meyer;

12th Media Services (5 June 2017)

Reference book(s)

1. Discrete Mathematics and Its Application; Kenneth H Rosen & Dr Kamala

Krithivasan; McGraw Hill; 8th edition

2. A Textbook on Discrete Mathematics; CV Sastry and Rakesh Nayak; Wiley (1

October 2020)

Professional skills for the workplace

Introduction

Professional Skills for the Workplace is a course designed to help students develop the

human skills they need to succeed in the modern workplace. The course is based on the

Human Skills Matrix, developed by MIT JWEL, and covers four key quadrants: thinking,

leading, interacting, and managing oneself. Students will learn practical strategies for

improving their communication, collaboration, problem-solving, and self-management skills.

Course outcomes

At the end of this course, students will be able:

1. To explain the four quadrants of the Human Skills Matrix and how they relate to

success in the workplace.

2. To apply critical thinking skills to solve complex problems and make effective

decisions.

3. To lead and collaborate effectively with others, including managing teams and

facilitating group discussions.

4. To communicate clearly and persuasively in various professional contexts, including

written, verbal, and nonverbal communication.

5. To manage time and prioritize tasks effectively, including setting goals and

developing strategies for self-motivation and self-improvement.

6. To synthesize different human skills and apply them to real-world workplace

challenges, such as conflict resolution, innovation, and project management.

Syllabus

Unit 1 – Managing ourselves

Self-awareness, Adaptability, Managing emotions, Accountability, Professionalism, Taking

initiative, Persistence, Planning and organizing, Integrity

Unit 2 – Interacting

Writing good emails & reports, Use of communication tools, Use of project management

tools, Curating relationships on social media through professional networking sites,

Negotiation skills, Presentation skills

Univ 3 – Thinking

Ethical dilemmas, being an intrapreneur, Building a growth mindset, Systems thinking

Unit 4 – Leading

Empowering others, Having a strategic vision, Project management, Performance

management

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Subjective assessment using
case studies

20

Continuous assessment - 2 Subjective assessment using
case studies

20

Continuous assessment - 3 Multiple-choice test 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Multiple-choice test 20

Text book(s)

COMMUNICATION SKILLS FOR PROFESSIONALS AND STUDENTS: An Occupational

Therapist's Perspective; Dr. Amitabh Kishor Dwivedi; Notion Press; 1st edition

Reference book(s)

The Communication Book: 44 Ideas for Better Conversations Every Day; Mikael Krogerus &

Roman Tschäppeler; Portfolio Penguin (19 April 2018)

The breadth of computer science 1

Introduction

This course provides students with a unique opportunity to build a modern computer system

from scratch. The course will let students start with Nand gates, build their way up to a fully

functioning computer with an operating system, and gain a deep understanding of how

computers work.

Course outcomes

At the end of this course, students will be able:

1. To demonstrate knowledge of basic computer architecture principles.

2. To work with Boolean algebra and logic design.

3. To implement basic combinational and sequential circuits.

4. To write assembly language programs to control hardware components.

5. To design and implement a fully functional computer system.

6. To evaluate the trade-offs involved in different hardware and software design

choices.

Syllabus

Unit 1: Boolean Logic and Digital Design

Introduction to digital systems and digital logic, Boolean algebra and logic gates,

Combinational logic circuits, Sequential logic circuits, Building elementary logic gates using

Nand gates

Unit 2: Boolean Arithmetic and the CPU

Arithmetic logic unit (ALU), Half adder and full adder, Ripple carry adder, Multi-bit addition,

Multi-bit ALU,

CPU components (registers, instruction memory, data memory)

Unit 3: Memory and Machine Language

Random-access memory (RAM), Memory maps, Machine language, Assembly language,

The HACK computer architecture, Implementation of a simple computer using the HACK

architecture

Unit 4: Computer Architecture

The von Neumann architecture, Memory hierarchy, Input/output (I/O), Operating system

(OS) basics,

Hardware-software interface, Building an assembler to translate assembly code into

machine code,

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Multiple-choice test 20

Continuous assessment - 2 Multiple-choice test 20

Continuous assessment - 3 Multiple-choice test 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Multiple-choice test 20

Text book(s)

The Elements of Computing Systems: Building a Modern Computer from First Principles by

Noam Nisan and Shimon Schocken, published by MIT Press. Latest edition: 2nd edition

(August 2019).

Reference book(s)

1. Computer Organization and Design: The Hardware/Software Interface by David A.

Patterson and John L. Hennessy, published by Elsevier. Latest edition: 5th edition

(October 2013).

2. Digital Design and Computer Architecture by David Money Harris and Sarah L.

Harris, published by Morgan Kaufmann. Latest edition: 3rd edition (June 2021).

Problem solving using programming

Introduction

Problem Solving using Programming is an introductory course that teaches fundamental

programming concepts and techniques using C++ and Python. After learning this course,

students will easily be able to learn more programming languages and use this course for

practicing. The course emphasizes problem-solving skills and computational thinking, and

equips students with the skills necessary to tackle real-world problems using programming.

Course outcomes

At the end of this course, the students will be able:

1. To explain fundamental programming concepts, including data types, control

structures, and functions.

2. To apply programming constructs to solve simple problems and algorithms in C++

and Python.

3. To analyze and evaluate the efficiency and correctness of algorithms and programs.

4. To synthesize programming constructs to develop larger programs that solve

complex problems.

5. To evaluate the strengths and weaknesses of different programming constructs and

choose appropriate solutions for different problems.

6. To communicate programming solutions clearly and effectively, both orally and in

writing.

Syllabus

Unit 1 Algorithms

Computational thinking, Decomposition, Abstraction, Pattern recognition, Algorithms, Writing

pseudocode and translating it to code, Looping (While and do-while loops), Variables

(Scope, lifetime and initialization), Datatypes (Structures, classes, enums)

Unit 2 Variables

Review of variables and their uses, including how to declare and initialize variables;

Arithmetic operators, Relational operators, Logical operators, Bitwise operators &

Assignment operators; Introduction to strings and advanced string manipulation techniques,

such as concatenation, substring extraction, searching, and replacing; Introduction to

characters including ASCII and Unicode encoding, character classification functions, and

character mapping; Typecasting; Using constants to represent fixed values in code; local

and global variables, and their uses and limitations; operator precedence, order of

evaluation, and short-circuiting

Unit 3 Control basics

If, If else, for loop & while loop; using boolean expressions to control program flow and

evaluate conditions; using switch statements to select one of many possible code paths

based on a value or condition; advanced topics such as nested loops, loops with multiple

variables, and using loops to iterate

Unit 4 Control advanced

Nested if, Nested if elseif, Else, for loop, while loop in arrays and strings; Exception handling;

using recursive functions to solve problems that can be broken down into smaller sub-

problems; advanced techniques for using loops, such as using loop counters, loop flags, and

sentinel values; using advanced branching techniques such as the ternary operator and

conditional expressions

Unit 5 Modularity

Organizing code into modules, classes, and functions to improve code structure and

reusability; Function parameters; Function return value; reviewing recursion and its use in

function design and implementation; Libraries and APIs

Unit 6 Program development

Game development using a programming language, debugging, basic game design

principles, user interface design, performance optimization

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Coding test 20

Continuous assessment - 2 Coding test 20

Continuous assessment - 3 Coding test 20

Continuous assessment - 4 Coding test 20

Continuous assessment - 5 Coding test 20

Text book(s)

Think Like a Programmer: An Introduction to Creative Problem Solving by V. Anton Spraul,

Released August 2012, published by No Starch Press

Reference book(s)

1. Programming in Python 3: A Complete Introduction to the Python Language; Mark

Summerfield; Pearson Education; Second edition

2. C++ Programming Language; Bjarne Stroustrup; Pearson Education; 4th edition

Design for developers

Introduction

Design for Developers is a course designed to introduce students to the fundamental

principles of user interface (UI) and user experience (UX) design, with a focus on the needs

of developers. The course covers topics such as visual design, user-centered design,

usability testing, and accessibility, and provides hands-on experience with design tools and

techniques.

Course outcomes

At the end of the course, students will be able:

1. To explain the basic principles of user-centered design, and how they apply to

software development.

2. To evaluate and critique the design of existing software applications, and identify

areas for improvement in terms of user experience and usability.

3. To apply visual design principles and techniques, such as typography, color theory,

and layout, to create effective user interfaces.

4. To conduct usability testing and other evaluation methods to measure the

effectiveness and usability of software applications.

5. To synthesize different design concepts and techniques to create well-designed and

user-friendly software interfaces.

6. To evaluate the accessibility of software applications and understand the importance

of designing for users with diverse needs.

Syllabus

Unit 1 How to approach design as a developer

Why design for developers, Getting started with design education, Getting started with

Figma, Labs on Figma

Unit 2 UX Design for Developers

Understanding design sprints, Understanding the user, Information architecture, Accessibility

in design, How to build good digital products, Psychology in UX design, User research, User

journey mapping, Wireframing, Prototyping

Unit 3 UI Design for Developers

Visual design principles, Visual hierarchy, Working with text, Layouts and spacing, Working

with colours, Working with images, Creating depth in design, Working with components

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Case-study analysis 20

Continuous assessment - 2 Project-based 40

Continuous assessment - 3 Project-based 40

Text book(s)

About Face; Alan Cooper, Robert Reimann, Christopher Noessel and David Cronin; Wiley

Publishing, 2014

Reference book(s)

1. Hands-on UX design for developers; Elvis Canziba; Packt, 2018

2. Refactoring; Adam Wathan and Steve Shoger

Semester 2

Learning how to learn

Introduction

Learning How to Learn is a course designed to help students master the concepts and

techniques of effective learning, with a focus on online and remote learning environments.

The course covers topics such as the science of learning, memory techniques,

metacognition, and overcoming procrastination, and provides practical strategies for

improving learning outcomes in any subject area.

Course outcomes

At the end of this course, students will be able:

1. To explain the key principles and processes involved in effective learning, and how

they can be applied to any subject area.

2. To apply a variety of memory techniques, such as spaced repetition and

visualization, to improve retention and recall of information.

3. To practice metacognitive strategies, such as self-reflection and self-assessment, to

monitor and improve learning progress.

4. To identify and overcome common obstacles to effective learning, such as

procrastination and distractions.

5. To synthesize different learning techniques and apply them to real-world learning

challenges, such as preparing for exams or learning new skills.

6. To evaluate the effectiveness of different learning strategies and make evidence-

based decisions about the best approach for a given learning situation.

Syllabus

Unit I: How learning works

Introduction to Focus and Diffuse Modes, the role of Practice in learning,

Introduction to Memory & Sleep in learning, Procrastination on learning, case

studies to end the unit (on learning languages, creativity, problem solving and

much more – how learning happens for these skills)

Unit II: Chunking

Introduction to Chunking, how to form a Chunk, Illusions of Competence, the

pitfalls of overlearning & choking

Unit III: Procrastination, Memory and Learning

Avoiding rut thinking, strategies and techniques to tackle procrastination while

learning, Process vs. Product, Deep-dive into memory, Long-term memory, Being

a life-long learner, The Memory Palace technique

Unit IV: Being a better learner

Creating Visual metaphors, creating analogies for learning, Importance of

checklists, Learning vs. Prepping for tests, Case studies

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Multiple-choice test 20

Continuous assessment - 2 Multiple-choice test 20

Continuous assessment - 3 Multiple-choice test 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Multiple-choice test 20

Text book(s)

1. Learning How to Learn: How to Succeed in School Without Spending All Your Time

Studying; A Guide for Kids and Teens; Barbara Oakley and Terrence Sejnowski;

Tarcher Perigree 2018

2. Make it Stick: The Science of Successful Learning; Peter C Brown, Henry L. Roediger

III & Mark A. McDaniel; Harvard University Press; 1st edition

Reference book(s)

1. Mindshift: Break Through Obstacles to Learning and Discover Your Hidden Potential;

Barbara Oakley, Penguin, 2017

2. How we learn: The surprising truth about when, where and why it happens; Benedict

Carey, Random House, 2014

3. Ultralearning: Accelerate Your Career, Master Hard Skills and Outsmart the

Competition; Scott H Young, Harper Collins, 2019

The breadth of computer science 2

Introduction

In this course, students will continue the journey of building a modern computer system from

first principles. Starting with the CPU, they will design and implement an assembler, a

compiler, and an operating system. By the end of the course, students will have built a

complete, fully functional computer system.

Course outcomes

At the end of this course, students will be able:

1. To design and implement a simple CPU.

2. To write an assembler to translate assembly language code into machine code.

3. To write a compiler to translate high-level language code into assembly language

code.

4. To design and implement a simple operating system.

5. To analyze and optimize the performance of software and hardware components.

6. To collaborate with a team to build a complete, functional computer system.

Syllabus

Unit 1: Virtual Machine I: Stack Arithmetic

Introduction to virtual machines (VMs); Stack operations and the stack architecture, Stack

arithmetic;

Memory segments: local, argument, this, that; Program flow control; Function calling

conventions

Unit 2: Virtual Machine II: Program Control

Program flow control, Labeling commands and program flow control, Conditional and

unconditional branching, Function calling and return, Implementing function calls using VM

operations, Recursive function calling

Unit 3: High-Level Language and Compiler I: Syntax and Parsing

Overview of high-level programming languages, Language grammar and syntax, Formal

language theory,

Parsing and its various techniques, Top-down and bottom-up parsing, Implementation of a

Jack compiler

Unit 4: High-Level Language and Compiler II: Code Generation and Optimization

Code generation and its challenges, Compilation of expressions, statements and control

structures, Memory management, Symbol table management, Intermediate representations,

Optimizations and their techniques

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Multiple-choice test 20

Continuous assessment - 2 Multiple-choice test 20

Continuous assessment - 3 Multiple-choice test 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Multiple-choice test 20

Text book(s)

The Elements of Computing Systems: Building a Modern Computer from First Principles by

Noam Nisan and Shimon Schocken, published by MIT Press. Latest edition: 2nd edition

(August 2019).

Reference book(s)

1. Computer Architecture: A Quantitative Approach by John L. Hennessy and David A.

Patterson, published by Elsevier. Latest edition: 6th edition (June 2021).

2. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Monica S. Lam, Ravi

Sethi, and Jeffrey D. Ullman, published by Pearson. Latest edition: 2nd edition

(September 2006).

Back-end Web Development

Introduction

This course provides a comprehensive introduction to back-end web development, focusing

on building scalable and secure server-side applications. Students will learn how to use

Node.js and Express to create dynamic web services and APIs. The course covers database

management, server optimization, and integration with front-end technologies.

Course outcomes

By the end of this course, students will be able to:

1. Explain the fundamental concepts of server-side programming and the role of

backend in web development.

2. Develop server-side applications using Node.js and Express.

3. Compare different database management systems and their use in back-end

development.

4. Assess and optimize the performance of server-side applications.

5. Design and implement secure and scalable back-end solutions.

6. Integrate back-end services with front-end applications in a full-stack environment.

Syllabus

Unit 1: Introduction to Back-end Development

Fundamentals of server-side programming, Role of back-end in web development,

Introduction to Node.js, Setting up a Node.js environment, Basics of JavaScript for back-end

development

Unit 2: Working with Express.js

Introduction to Express.js, Routing in Express, Middleware in Express, Building RESTful

APIs, Handling requests and responses

Unit 3: Database Management

Introduction to databases, SQL vs NoSQL databases, Working with MongoDB, Mongoose

ORM, CRUD operations in MongoDB

Unit 4: Security and Authentication

Security best practices in web development, User authentication and authorization,

Implementing JWT-based authentication, Protecting routes and data, Secure communication

with HTTPS

Unit 5: Performance and Scalability

Performance optimization techniques, Caching strategies, Load balancing and clustering,

Handling concurrent requests, Scaling applications

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 MCQ/ Subjective/ Coding 20

Continuous assessment - 2 MCQ/ Subjective/ Coding 20

Continuous assessment - 3 MCQ/ Subjective/ Coding 20

Continuous assessment - 4 MCQ/ Subjective/ Coding 20

Continuous assessment - 5 MCQ/ Subjective/ Coding 20

Text book(s)

Beginning Node.js, Express & MongoDB Development; Greg Lim; Published by Greg Lim;

2020 edition

Reference book(s)

Learning Node.js Development: Learn the fundamentals of Node.js, and deploy and test

Node.js applications on the web; Andrew Mead; Packt Publishing; 2018 edition

Databases

Introduction

This course covers the essential concepts of database systems, focusing on NoSQL

databases, Redis, and vector databases. Students will learn to design, implement, and

manage non-relational databases, using technologies like MongoDB, Cassandra, Redis, and

emerging vector databases.

Course outcomes

By the end of this course, students will be able to:

1. Describe the fundamental concepts of NoSQL databases and their differences from

traditional relational databases.

2. Explain the architecture and data models used in MongoDB and other NoSQL

databases.

3. Develop basic CRUD operations and queries using MongoDB.

4. Analyze use cases to determine the suitability of NoSQL databases over relational

databases for specific scenarios.

5. Assess the performance and scalability of MongoDB in various application contexts.

6. Design and implement a complete application using MongoDB, incorporating

advanced features such as indexing, aggregation, and replication.

Syllabus

Unit 1: Introduction to NoSQL Databases

Overview of NoSQL databases, Types of NoSQL databases: Key-Value, Document,

Column-Family, Graph, Comparison with relational databases, Use cases and applications

Unit 2: MongoDB Basics

Introduction to MongoDB, Installation and setup, MongoDB architecture, Data models:

documents, collections, and databases

Unit 3: CRUD Operations in MongoDB

Creating databases and collections, Inserting, updating, and deleting documents, Querying

documents using MongoDB query language, Working with BSON

Unit 4: Indexing and Aggregation

Understanding indexing in MongoDB, Creating and managing indexes, Aggregation

framework: pipelines, stages, and operators, Examples of aggregation queries

Unit 5: Advanced MongoDB Features

Data replication and sharding, Transactions in MongoDB, MongoDB Atlas and cloud

services, Security and authentication

Unit 6: Performance and Scalability

Performance tuning techniques, Monitoring and profiling MongoDB, Scaling MongoDB

applications, Case studies and real-world examples

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 MCQ/ Subjective/ Coding 20

Continuous assessment - 2 MCQ/ Subjective/ Coding 20

Continuous assessment - 3 MCQ/ Subjective/ Coding 20

Continuous assessment - 4 MCQ/ Subjective/ Coding 20

Continuous assessment - 5 MCQ/ Subjective/ Coding 20

Text book(s)

NoSQL with MongoDB in 24 Hours, Sams Teach Yourself; Brad Dayley; Pearson

Publication; 2015 edition

Reference book(s)

1. NoSQL: Database for Storage and Retrieval of Data in Cloud; Ganesh Chandra

Deka; CRC Press; 2017 edition

2. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and

Maintainable Systems; Martin Kleppmann; Shroff/O'Reilly; 2017 edition

Full Stack Web Development

Introduction

Full Stack Web Development is a course designed to teach students how to build dynamic

web applications using the MERN stack (MongoDB, Express, React, and Node.js). The

course covers both backend and database development, as well as front-end technologies

like HTML, CSS, and JavaScript. By the end of the course, students will have built their own

unique full stack application, which they can showcase in their portfolio.

Course outcomes

At the end of this course, students will be able:

1. To describe the architecture and components of a full stack web application,

including front-end and back-end technologies and their interactions.

2. To design and develop a database schema using MongoDB, including defining data

models, creating indexes, and writing queries.

3. To create RESTful APIs using Node.js and Express, including handling HTTP

requests and responses, and interacting with the database.

4. To implement front-end user interfaces using React, including using React

components, managing state, and handling user input.

5. To integrate front-end and back-end components to create a fully functional full stack

web application, including using asynchronous communication and handling errors

and exceptions.

6. To design and implement a unique full stack application as a capstone project,

including identifying user requirements, developing a software design, and

implementing and testing the application.

Syllabus

Unit 1: Introduction to Full Stack Web Development

Overview of full stack web development, the MERN stack and its components, setting up the

development environment (using tools like Node.js, MongoDB, and VSCode), basic backend

development concepts (e.g., routing, handling requests, working with databases)

Unit 2: Backend Development and Databases

Designing and implementing a database schema using MongoDB, writing basic queries and

data manipulation commands, creating a RESTful API using Node.js and Express, handling

HTTP requests and responses, interacting with the database using Mongoose

Unit 3: Front-end Development with React

Overview of React and its components, creating and managing React components, working

with state and props, handling user input and events, styling with CSS and Bootstrap

Unit 4: Software Engineering and Project Management

Introduction to Software Engineering and SDLC, Agile and Scrum methodologies, software

project management tools (like JIRA/ Trello/ GitHub), version control with Git

Unit 5: Integrating Front-end and Back-end Components

Asynchronous communication between front-end and back-end, handling errors and

exceptions, using middleware to process requests, authentication and authorization with

JWT

Unit 6: Building a project

Design and development of a unique full stack application, identifying user requirements and

developing a software design, implementing and testing the application, deployment on

cloud platforms like AWS, Heroku or Netlify

Assessment plan

The grading of this course is based on the students’ progress in building their capstone

project. Each capstone is divided into 5 different milestones (this would vary from project to

project, since each would be unique).

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Project milestone #1
evaluation (Design and Front-

end)

20

Continuous assessment - 2 Project milestone #2
evaluation (Back-end and

Databases part 1)

20

Continuous assessment - 3 Project milestone #3
evaluation (Back-end and

Databases part 2)

20

Continuous assessment - 4 Project milestone #4
evaluation (Full Stack)

20

Continuous assessment - 5 Project milestone #5
evaluation (Deployment and

final review)

20

Text book(s)

Full-Stack React Projects: Learn MERN stack development by building modern web apps

using MongoDB, Express, React, and Node.js; Shama Hoque; Packt Publishing Limited; 2nd

edition

Reference book(s)

1. Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React,

Node.js App; Greg Lim

2. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React,

and Node; Vasan Subramanian; Apress; 2nd edition

Semester 3

Economics, Politics and Rural Society Development

Introduction

This course is designed to provide CS engineers with an understanding of basic economics,

politics, and rural development and how these three fields are interconnected. Students will

learn about the principles of economics, the functioning of political systems, and the

challenges and opportunities in rural development. Through this course, students will

develop a multidisciplinary perspective, enabling them to identify and contribute to solutions

that benefit both society and the economy.

Course outcomes

At the end of this course, students will be able:

1. To demonstrate an understanding of basic economic principles and their applications

to real-world scenarios.

2. To analyze political systems and the role of technology in modern political processes.

3. To evaluate the challenges and opportunities in rural development, with a focus on

the role of technology.

4. To apply economic and political principles to rural development scenarios.

5. To develop critical thinking skills to identify and solve complex problems related to

economics, politics, and rural development.

6. To communicate effectively with stakeholders from different backgrounds and

perspectives, including policymakers, entrepreneurs, and rural communities.

Syllabus

Unit 1: Introduction to Economics

Basic concepts of economics, including demand, supply, and market equilibrium;

Macroeconomic concepts, such as GDP, inflation, and unemployment; Economic policies,

such as fiscal and monetary policies; Applications of economics in the technology industry.

Unit 2: Political Systems and Processes

Understanding of the functioning of political systems, such as democracy, authoritarianism,

and socialism; The role of technology in modern political processes, including social media

and big data analytics; Political policies and their impact on the economy and society.

Unit 3: Rural Development

Definition and characteristics of rural areas; Challenges and opportunities in rural

development, including poverty, health, and education; Role of technology in rural

development, including e-governance, e-commerce, and digital literacy; Policies and

initiatives for rural development.

Unit 4: Interdisciplinary Perspectives and Case Studies

Interdisciplinary approach to solving complex problems related to economics, politics, and

rural development; Case studies of successful rural development initiatives that integrate

technology, economics, and politics.

Assessment plan

Assessment
component

Details of the
assessment

Additional details, if any Weightage

Continuous
assessment - 1

Multiple-choice test on
unit 1

A short quiz to test the basic
concepts learned in Unit 1,

including demand, supply, and
market equilibrium, and

macroeconomic concepts such as
GDP, inflation, and unemployment.

25

Continuous
assessment - 2

Political analysis Students will choose a political
system (democracy,

authoritarianism, socialism, etc.)
and analyze how it affects the

economy and society. Students will
be asked to analyze political

policies and their impact on the
economy and society and provide a

writeup followed by a viva.

25

Continuous
assessment - 3

Rural development
proposal

Students will develop a proposal for
a rural development initiative that
integrates technology, economics,
and politics. The proposal should

address challenges and
opportunities, role of technology,

and policies and initiatives for rural
development.

25

Continuous
assessment - 4

Case study analysis Students will analyze a real-world
case study related to rural

development and write a report on
the challenges and opportunities,

role of technology, and policies and
initiatives for rural development.

25

Text book(s)

1. Economics: Principles, Problems, and Policies by Campbell McConnell, Stanley

Brue, and Sean Flynn. (Latest edition, published by McGraw-Hill Education India)

2. Politics: An Introduction by Andrew Heywood. (Latest edition, published by Palgrave

Macmillan India)

3. Rural Development: Principles, Policies and Management by B. P. Vani and K.

Sivaramane. (Latest edition, published by SAGE Publications India Pvt Ltd)

Reference book(s)

1. Rural Development: Putting the last first; Robert Chambers; Pearson Education

India; 2nd Edition (2010)

2. Economic Development of Rural Areas: An Analysis of Problems and Prospects; L.

P. Singh; Sage Publications India Pvt Ltd; 2nd Edition (2011)

Mathematical thinking 101

Introduction

This course is designed to provide CS Engineers with a foundation in basic mathematical

concepts relevant to aptitude tests and problem-solving in the tech industry. Students will

learn topics such as number systems, ratios, proportions, averages, profit and loss, time and

work, time, speed and distance, permutations, percentages, simple and compound interest,

statistics, and geometry.

Course outcomes

By the end of the course, students will be able:

1. To apply mathematical concepts to solve problems encountered in aptitude tests and

the tech industry

2. To use mathematical methods to evaluate data and make informed decisions

3. To analyze and interpret statistical data

4. To understand the basic principles of geometry

5. To demonstrate proficiency in mental math and calculation

6. To identify the relationships between different mathematical concepts and apply them

to problem-solving.

Syllabus

Unit 1: Speed Math

Mental calculation techniques for addition, subtraction, multiplication, and division;

Approximation techniques for finding the nearest answer quickly; Tricks for working with

squares, cubes, and square roots

Unit 2: Number System

Conversion between number systems: decimal, binary, octal, and hexadecimal

Basic arithmetic operations in different number systems

Applications of number systems in computer science

Unit 3: Ratios, Proportions, Mixtures and Alligations

Concepts of ratios and proportions; Mixtures and Alligations concepts

Unit 4: Profit, Loss, Mixtures and Alligations

Understanding profit and loss in business context; Applications of profit, loss, partnerships;

Mixtures and Alligations problem-solving

Unit 4: Time and Work

Concepts of time and work; Work efficiency and work-days formulas; Applications of time

and work in problem-solving

Unit 5: Time, Speed and Distance

Concepts of time, speed, and distance; Different formulas and their applications; Relative

speed concept

Unit 6: Permutation

Concepts of permutation; Circular permutations and permutations with restrictions;

Applications of permutation in problem-solving

Unit 7: Percentages, SI and CI

Concepts of percentage, simple interest, and compound interest; Different formulas and their

applications;

Installments and recurring deposits

Unit 8: Statistics

Basic concepts of statistics: mean, median, mode, variance, and standard deviation; Data

presentation: pie chart, bar chart, and line graph; Applications of statistics in problem-solving

Unit 9: Geometry

Basic concepts of geometry: points, lines, angles, and triangles; Pythagorean theorem and

trigonometry

Applications of geometry in problem-solving

Assessment plan

Assessment component Details of the assessment Weightage

Continuous assessment - 1 Multiple-choice test 20

Continuous assessment - 2 Multiple-choice test 20

Continuous assessment - 3 Multiple-choice test 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Multiple-choice test 20

Text book(s)

Quantitative Aptitude for Competitive Examinations; R.S. Aggarwal; S. Chand Publishing;

2021

Reference book(s)

1. How to Prepare for Quantitative Aptitude for CAT; Arun Sharma; McGraw Hill

Education; 2022

2. The Pearson Guide to Quantitative Aptitude for Competitive Examinations; Dinesh

Khattar; Pearson Education; 2021

Database Management Systems

Introduction

This course is designed to teach students the fundamental concepts and principles of

Database Management Systems (DBMS) and how to effectively design, implement, and

manage databases. Students will learn various database models and acquire hands-on

experience in using popular DBMS tools.

Course outcomes

At the end of this course, students will be able:

1. To understand the fundamental concepts of database management systems

including data models, data normalization, and database design.

2. To be able to design and implement a relational database using SQL.

3. To be able to use a popular DBMS tool such as MySQL to create and manage

databases.

4. To be able to use SQL to query and manipulate data stored in a database.

5. To be able to apply database management concepts to real-world scenarios and

problem-solving.

6. To be able to design and implement a functional database-driven web application.

Syllabus

Unit I – Introduction to DBMS

The Evolution of Database Systems- Overview of a Database Management System-Outline

of DatabaseSystem Studies-The Entity-Relationship Data Model: Elements of the E/R

Model-Design Principles-The Modeling of Constraints-Weak Entity Sets.

Unit II – The Relational data model and Algebra

Basics of the Relational Model-From E/R Diagrams to Relational Designs-Converting

Subclass Structures to Relations-Functional Dependencies-Rules About Functional

Dependencies-Design of Relational Database Schemas – Multi valued Dependencies-

Relational Algebra: Relational operations-Extended Operators of Relational Algebra-

Constraints on Relations.

Unit III – SQL

Simple Queries in SQL-Sub queries-Full-Relation Operations-Database Modifications-

Defining a Relation Schema-View Definitions- Constraints and Triggers: Keys and Foreign

Keys-Constraints on Attributes and Tuples-Modification of Constraints-Schema-Level

Constraints and Triggers -Java Database ConnectivitySecurity and User Authorization in

SQL

Unit IV – Index structures and query processing

Index Structures:Indexes on Sequential Files-Secondary Indexes-B-Trees-Hash Tables-

Bitmap Indexes-Query Execution: Physical-Query-Plan Operators-One-Pass , two-pass &

index based Algorithms, Buffer Management, Parallel Algorithms-Estimating the Cost of

Operations-Cost-Based Plan Selection -Order for Joins-Physical-Query-Plan

Unit V – Failure recovery and concurrency control

Issues and Models for Resilient Operation -Undo/Redo Logging-Protecting against Media

FailuresConcurrency Control: Serial and Serializable Schedules-Conflict-Serializability-

Enforcing Serializability by Locks-Locking Systems With Several Lock Modes-Concurrency

Control by Timestamps, validation transaction management: Serializability and

Recoverability-View Serializability-Resolving DeadlocksDistributed Databases: commit&

lock.

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Project-based Design and implement a simple
database schema for a given

scenario

20

Continuous
assessment - 2

Project-based Implement a more complex
database schema and write

queries to retrieve data from the
database

20

Continuous
assessment - 3

Project-based Design and implement a
database security and

administration plan for a given
scenario

20

Continuous
assessment - 4

Project-based Apply database concepts to a
real-world scenario and

implement a complete database
solution

20

Continuous
assessment - 5

Project-based Optimize a database schema
and write efficient queries for a

given data set.

20

Text book(s)

Database Systems: Models, Languages, Design And Application Programming By Ramez

Elmasri, Shamkant B. Navathe, Pearson 6th edition

Object Oriented Programming

Introduction

This course teaches the principles of Object-Oriented Programming (OOP), which is a key

concept in modern programming paradigms. The course is language-agnostic, but students

can choose to implement their projects in either C++ or Python.

Course outcomes

At the end of this course, students will be able:

1. To explain the fundamental concepts and principles of OOP, such as encapsulation,

inheritance, and polymorphism.

2. To apply OOP concepts to develop software applications in C++ and Python.

3. To design and implement complex data structures and algorithms using OOP

concepts.

4. To develop and manage large-scale software projects using OOP design patterns

and software engineering practices.

5. To analyze and evaluate the performance and efficiency of OOP-based programs.

6. To collaborate and communicate effectively in a team environment to develop and

maintain OOP-based software projects.

Syllabus

Unit 1 Introduction to Object-Oriented Programming

Basics of OOP, Objects and Classes, Abstraction, Encapsulation, Inheritance,

Polymorphism, Procedural Programming vs OOP

Unit 2 Advanced Concepts in OOP

 Templates, Overloading, Exception Handling, Operator Overloading, Inheritance and

Polymorphism, Advanced Topics in Inheritance

Unit 3 Object-Oriented Design Principles

SOLID Principles, Design Patterns, Design for Reuse, Design for Testability.

Unit 4 Software Engineering Practices

Agile Development, Waterfall Model, Software Development Life Cycle (SDLC), Version

Control, Code Reviews, Testing and Debugging.

Unit 5

Advanced Topics in OOP Multithreading, Concurrency, Networking, GUI Programming,

Database Programming, Best Practices for OOP

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Coding test, online Coding test on basic object-
oriented concepts (e.g., classes,

objects, inheritance,
polymorphism)

20

Continuous
assessment - 2

Coding test, online Coding test on advanced object-
oriented concepts (e.g.,

interfaces, abstract classes,
design patterns)

20

Continuous
assessment - 3

Project-based Project-based coding assignment
where students design and

implement an object-oriented
program that solves a specific

problem

20

Continuous
assessment - 4

Coding test, online Coding test on object-oriented
design principles (e.g., SOLID

principles, cohesion and
coupling, design patterns)

20

Continuous
assessment - 5

Project-based Project-based coding assignment
where students design and

implement a larger-scale object-
oriented program.

20

Text book(s)

1. Object-Oriented Programming with C++; E Balagurusamy; McGraw Hill; Eighth

edition

2. Python Object-Oriented Programming; Steven F. Lott & Dusty Phillips; Packt

Publishing Limited; 4th edition

3. Java The Complete Reference; Herbert Schildt; McGraw Hill; Eleventh edition

Reference book(s)

1. Object Oriented Programming C++; Robert Lafore; Pearson Education India; 4th

edition

2. OOPS with C++ and Java; Balagurusamy; McGraw Hill Education 2014 edition

3. Python 3 Object-Oriented Programming; Dusty Phillips; Packt 3rd edition

Semester 4

How Human Languages work

Introduction

In this course, students will explore the fundamental concepts of human language, including

phonetics, syntax, semantics, and pragmatics. The course will provide an overview of the

structure and function of human language and explore how language is processed in the

brain.

Course outcomes

At the end of this course, students will be able:

1. Understand the basic concepts of human language, including phonetics, syntax,

semantics, and pragmatics.

2. Explore the structure and function of human language, including the sound systems

of languages, grammatical structures, and the meanings of words and sentences.

3. Understand the social and cultural dimensions of language use, including language

variation and change, multilingualism, and language attitudes.

4. Understand how language is processed in the brain, including the neural

mechanisms of language comprehension and production.

5. Analyze the ways in which language reflects and shapes cultural and social

identities.

6. Develop critical thinking skills by analyzing linguistic data and applying linguistic

concepts to real-world problems.

Syllabus

Unit 1: Introduction to Language and Linguistics

Overview of Linguistics and its sub-fields, Phonetics and Phonology, Morphology

Unit 2: Syntax and Semantics

Syntax and Syntactic Structures, Semantics and Semantic Structures, Language Typology

Unit 3: Language Acquisition and Language Change

First and Second Language Acquisition, Language Change and Language Contact,

Historical Linguistics

Unit 4: Sociolinguistics and Applied Linguistics

Sociolinguistics and Language Variation, Language Policy and Planning, Language and

Identity, Language and Technology

Unit 5: Language in Context

Language and Culture, Language and Gender, Language and Power, Language and

Globalization

Unit 6: Language Research and the Future of Linguistics

Research Methods in Linguistics, Current Debates in Linguistics, The Future of Linguistics

Assessment plan

Assessment component Assessment type Weightage %

Continuous assessment - 1 Multiple-choice test 20

Continuous assessment - 2 Multiple-choice test 20

Continuous assessment - 3 Presentation 20

Continuous assessment - 4 Multiple-choice test 20

Continuous assessment - 5 Presentation 20

Text book(s)

How Languages Work: An Introduction to Language and Linguistics by Carol Genetti;

Cambridge University Press; 2nd edition

Reference book(s)

How Language Works; David Crystal; Penguin UK (2007 edition)

Tools and techniques for creative thinking

Introduction

This course introduces students to a variety of tools and techniques for generating creative

ideas and solving problems. Students will learn strategies for brainstorming, mind mapping,

idea generation, and critical thinking. The course will focus on developing practical skills for

creative thinking that can be applied in a variety of contexts.

Course outcomes

At the end of this course, students will be able:

1. To use a variety of creative thinking tools and techniques to generate new ideas

2. To apply critical thinking skills to analyze and evaluate creative ideas and solutions

3. To identify and overcome barriers to creative thinking and problem-solving

4. To apply creative thinking skills in practical situations, such as in business, design,

and technology

5. To develop effective communication skills for presenting and selling creative ideas

6. To work collaboratively with others to generate and implement creative solutions

Syllabus

Unit I – Introduction to Principles of Creativity

Mother and father of innovation, Levels of creativity, Creative environments

Unit II – Creativity tools

Creativity tools, Brainstorming techniques, Principles of brainstorming, Flip chart, Post-it,

Alphabet brainstorming, Brainwriting, Grid brainstorming

Unit III – Thinking styles

The value of diversity, Principles of various thinking styles, Design thinking, Different thinking

styles in practice

Unit IV – Morphological analysis

Principles of morphological analysis, Group application of plotline MA

Unit V – TRIZ theory

Principles and discussion, Contradiction matrix, TRIZ Parameters and Principles

Unit VI – SCAMPER

SCAMPER for architecture, team innovation using SCAMPER, Use of differen thinking styles

Unit VII – Using the tools in combination

Creative problem solving, Double diamond model, Circle brainstorming steps, E-tivity: B-link

Assessment plan

Assessment component Assessment type Weightage %

Continuous assessment - 1 Multiple-choice test 20

Continuous assessment - 2 Multiple-choice test 20

Continuous assessment - 3 Case study analysis 20

Continuous assessment - 4 Case study analysis 20

Continuous assessment - 5 Project followed by a
presentation

20

Text book(s)

Lateral Thinking: A Textbook of Creativity; Penguin; 2016 edition

Reference book(s)

1. "Cracking Creativity: The Secrets of Creative Genius" by Michael Michalko (2001);

Ten Speed Press; Revised ed. edition (26 June 2001)

2. "A Whack on the Side of the Head: How You Can Be More Creative" by Roger von

Oech (2008); Grand Central Publishing; Special edition (5 May 2008)

Operating Systems

Introduction

This course introduces the concepts and principles of operating systems, including process

management, memory management, file systems, and device management. Students will

learn about various scheduling algorithms and memory allocation techniques used in

operating systems. They will also be introduced to different types of operating systems and

will learn about the trade-offs involved in designing and implementing these systems.

Through practical assignments and projects, students will gain hands-on experience in

implementing basic operating system functionalities. By the end of the course, students will

have a solid understanding of the security and privacy issues in modern operating systems.

Course outcomes

At the end of this course, students will be able:

1. To understand the fundamental concepts of operating systems such as processes,

threads, synchronization, and memory management.

2. To analyze the performance of various scheduling and memory allocation algorithms.

3. To compare and contrast different types of operating systems, such as batch, multi-

programmed, and real-time systems.

4. To develop an understanding of device management, file systems, and virtualization.

5. To gain practical experience in implementing basic operating system functionalities.

6. To understand the security and privacy issues in modern operating systems.

Syllabus

Unit I - Computer Arithmetic & Processor Organisation

Computer Registers, Classification of Instruction – Size: three, two, one and zero instruction,

Addressing Mode. Arithmetic and Logic Circuit Design. Instruction execution cycle:

Sequencing of control signals, hardwired control, micro-programmed control, control signals,

microinstructions, micro program sequencing, pre-fetching microinstructions. Introduction to

graphical processing unit (GPU).

Unit II - Memory Organization

Memory hierarchy, Main memories chip architectures, memory address map, memory

assembly to CPU. Auxiliary memory: magnetic tapes, disks (magnetic and SSDs). Associate

memory: hardware organization, match logic, read and writes operations. Cache memory.

Memory interleaving technique.

Unit III - Parallel Processing

Parallel processing, examples of parallel processing machines. Classification of parallel

processing: Handler classification – pipeline processing, vector processing and array

processing, Flynn’s classification – SISD, SIMD, MISD, MIMD. Pipeline conflicts.

Unit IV - Introduction to Operating Systems and Process Management

Introduction to operating systems. Process Management: what is a Process?, Process state,

Process control block. Threads. Cooperating processes. Inter-process communication. CPU

scheduling algorithms: Fist come first serve, shortest job first – primitive & non primitive,

Round Robin. Deadlock: Necessary conditions for occurrence of deadlocks, Deadlock

detection – Resource Allocation Graph. Deadlock Avoidance Algorithms: Banker Algorithm

and Safety Algorithm.

Unit V - Memory Management

Memory allocation techniques: Continues (Multiprogramming with fixed number of tasks),

Non-continues (Multiprogramming with variable number of tasks), Paging, Demand paging.

Page replacement algorithms: First in first out, Least frequently used, Most frequently used,

Optimal page replacement. Virtual memory concepts.

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Multiple-choice test,
online

This assessment covers the
basics of computer arithmetic,

processor organization, memory
hierarchy, and cache memory.

20

Continuous
assessment - 2

Project-based Students could be asked to
implement a specific scheduling
algorithm or choose from a set of

options, and would be graded
based on the functionality and

efficiency of their implementation.

20

Continuous
assessment - 3

Case-study analysis This requires students to analyze
a real-world operating system
and identify its strengths and

weaknesses. Students could be
asked to examine a specific

aspect of the operating system,
such as its memory management

or process scheduling, and
provide recommendations for

improvement.

20

Continuous
assessment - 4

Multiple-choice test,
online

This assessment will cover the
basics of parallel processing,
inter-process communication,

and deadlock avoidance
algorithms.

20

Continuous
assessment - 5

Project-based This assessment would require
students to apply their

knowledge of memory allocation
techniques and virtual memory

20

concepts. Students could be
asked to implement a specific
page replacement algorithm or

choose from a set of options, and
would be graded based on the
functionality and efficiency of

their implementation.

Text book(s)

Operating Systems Concepts, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

Wiley, 2012.

Reference book(s)

1. The Design of the Unix Operating System, Maurice Bach, Pearson; 1st edition

2. Operating systems concepts; Avi Silberschatz, Peter Baer Galvin, Greg Gagne;

Wiley; Ninth edition

Data Structure and Algorithms

Introduction

This course is focused on the study of data structures and algorithms, which are

fundamental to computer science. It is designed to provide a deep understanding of the

theory behind data structures and algorithms, as well as practical implementation

techniques. The course is practice-heavy, and students will develop skills in algorithm design

and analysis, problem-solving, and programming.

Course outcomes

At the end of this course, students will be able:

1. To explain the principles and concepts underlying data structures and algorithms,

such as complexity analysis, recursion, and graph theory.

2. To design and implement efficient data structures and algorithms, using a variety of

techniques and approaches.

3. To analyze the performance and correctness of data structures and algorithms, using

mathematical and empirical methods.

4. To apply data structures and algorithms to solve real-world problems, across a range

of application areas such as search, sorting, and graph algorithms.

5. To evaluate different data structures and algorithms, based on their suitability for

specific problem domains and constraints.

6. To create and present well-structured and well-documented code that implements

data structures and algorithms.

Syllabus

Unit I – Introduction

Algorithmic thinking, peak finding, Models of computation, Document distance, Python cost

model

Unit II – Sorting and trees

Insertion sort, Merge sort, Heaps and heap sort, Binary search trees, BST sort, AVL trees

and sort, Counting sort, radix sort, lower bounds for sorting and searching

Unit III – Hashing

Hashing with chaining, Table doubling, Karp-Rabin, Open addressing, Cryptographic

hashing

Unit IV – Numerics

Integer arithmetic, Karatsuba multiplication, Square roots, Newton’s method

Unit V – Graphs

Breadth first search, Depth first search, Topological mapping

Unit VI – Shortest paths

Single-source shortest paths problem, Dijkstra, Bellman-Ford, Speeding up Dijkstra

Unit VII – Dynamic Programming

Memoization, subproblems, guessing, bottom-up; Fibonacci, shortest paths, Parent pointers;

text justification, perfect-information blackjack, String subproblems, psuedopolynomial time;

parenthesization, edit distance, knapsack, Two kinds of guessing; piano/guitar fingering,

Tetris training, Super Mario Bros

Unit VIII – Advanced topics

Computational complexity, Algorithms research topics

Assessment plan

Assessment component Assessment type Weightage %

Continuous assessment - 1 Coding test 20

Continuous assessment - 2 Coding test 20

Continuous assessment - 3 Coding test 20

Continuous assessment - 4 Coding test 20

Continuous assessment - 5 Coding test 20

Text book(s)

Data Structures and Algorithms Made Easy; Narasimha Karumanchi; CareerMonk

Publications; 5th edition

Reference book(s)

Introduction to Algorithms; Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Clifford Stein; PHI Learning Pvt. Ltd. (Originally MIT Press); Third edition

Semester 5

English LSRW

Introduction

This is a course aimed at developing the four pillars of Technical English communication:

Listening, Speaking, Reading and Writing. The course is designed to benchmark against the

CEFR framework, and is tailored to focus on business and technical communication.

Course outcomes

At the end of this course, students will be able:

1. To comprehend and interpret spoken and written English at the CEFR B2 level

2. To produce spoken and written English at the CEFR B2 level

3. To develop active listening and speaking skills in order to participate in discussions,

debates, and presentations

4. To improve reading speed, comprehension, and critical analysis of texts related to

business and technical domains

5. To hone writing skills and produce effective business and technical documents such

as emails, reports, proposals, and presentations

6. To apply effective communication strategies in a professional setting, including

cultural awareness and intercultural communication.

Syllabus

Unit 1: Listening and Speaking

Introduction to listening and speaking skills, , Understanding different accents and intonation,

Developing active listening skills, Participating in discussions and debates, Giving

presentations and speeches

Unit 2: Reading

Introduction to reading skills, Skimming and scanning for information, Identifying main ideas

and supporting details, Understanding tone and purpose, Reading for inference and

implication

Unit 3: Writing

Introduction to writing skills, Planning and organizing written work, Writing effective emails

and memos

Writing reports and proposals, Writing for specific audiences and purposes

Unit 4: Grammar and Vocabulary

Introduction to grammar and vocabulary, Understanding verb tenses and structures,

Practicing correct sentence formation, Building vocabulary through context and word roots,

Using idioms and phrasal verbs in communication

Unit 5: Business and Technical Communication

Introduction to business and technical communication, Writing effective resumes and cover

letters

Conducting effective interviews, Understanding and writing technical documents,

Communicating with clients and colleagues in professional settings,

Unit 6: Test Preparation and Practice

Introduction to the CEFR framework, Practice tests and quizzes to assess learning, Review

and feedback on written and spoken communication, Goal setting for further improvement,

Final project or presentation

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Multiple-choice +
subjective, online + offline

Test of Reading, Writing,
Listening and Speaking skills as

per the CEFR framework

25

Continuous
assessment - 2

Multiple-choice +
subjective, online + offline

Test of Reading, Writing,
Listening and Speaking skills as

per the CEFR framework

25

Continuous
assessment - 3

Multiple-choice +
subjective, online + offline

Test of Reading, Writing,
Listening and Speaking skills as

per the CEFR framework

25

Continuous
assessment - 4

Multiple-choice +
subjective, online + offline

Test of Reading, Writing,
Listening and Speaking skills as

per the CEFR framework

25

Text book(s)

Professional English: for AKTU, Meenakshir Raman and Sangeetha Sharma, Oxford

Publication 1st edition

Reference book(s)

Word Power Made Easy; Norman Lewis; Penguin Random House India; Latest edition 2015

Principles of Science

Introduction

The Principles of Science course provides a foundation in natural science principles and

their application to computer science. The course will develop critical thinking and scientific

communication skills and help students appreciate the relationship between science,

technology, and society.

Course outcomes

At the end of this course, students will be able:

1. To understand the basic principles of natural science and their relevance to computer

science

2. To develop critical thinking skills to analyze scientific problems and apply scientific

principles to computer science problems

3. To develop skills in scientific communication and reporting

4. To understand the relationship between science and technology, and their impact on

society

5. To develop an appreciation for the ethical considerations in science and technology

6. To develop an understanding of the scientific method and its application to computer

science research

Syllabus

Unit 1: Introduction to Science and Technology

Definition and characteristics of science; Relationship between science and technology;

Historical development of science and technology; Ethical considerations in science and

technology

Unit 2: Physics Principles in Computer Science

Mechanics: motion, forces, work, energy, momentum; Electromagnetism: electric fields,

magnetic fields, electromagnetic waves; Thermodynamics: laws of thermodynamics, heat

transfer, phase transitions; Applications of physics principles to computer science problems;

Understanding of the relationship between physics and computer science

Unit 3: Chemistry Principles in Computer Science

Atomic structure: electrons, protons, neutrons, periodic table; Chemical reactions:

stoichiometry, acids and bases, oxidation and reduction; Thermodynamics: enthalpy,

entropy, free energy; Applications of chemistry principles to computer science problems;

Understanding of the relationship between chemistry and computer science

Unit 4: Biology Principles in Computer Science

Genetics: DNA, RNA, protein synthesis, inheritance patterns; Cell biology: structure and

function of cells, cellular processes; Evolution: mechanisms of evolution, natural selection,

speciation; Applications of biology principles to computer science problems; Understanding

of the relationship between biology and computer science

Unit 5: Earth and Environmental Science Principles in Computer Science

Geology: plate tectonics, minerals, rocks; Meteorology: weather patterns, climate change;

Ecology: ecosystems, biodiversity, conservation; Applications of Earth and environmental

science principles to computer science problems; Understanding of the relationship between

Earth and environmental science and computer science

Unit 6: Scientific Method and Research Ethics in Computer Science

Principles of the scientific method: observation, hypothesis, experimentation, analysis,

conclusion; Ethical considerations in computer science research: privacy, security, bias,

accountability; Skills in scientific communication and reporting: scientific writing,

presentations, data visualization; Applications of the scientific method and research ethics to

computer science research; Understanding of the importance of ethical considerations and

effective communication in computer science research.

Assessment plan

Assessment
component

Details of the
assessment

Additional details, if any Weightage

Continuous
assessment - 1

Multiple-choice test This quiz will cover Unit 1:
Introduction to Science and

Technology. It will include multiple-
choice questions, short answer

questions, and true/false questions.

10

Continuous
assessment - 2

Project that requires
analysis and a

presentation + write-up

This project will be based on Unit 2:
Physics Principles in Computer

Science. Students will be required
to choose a physics principle and

apply it to a computer science
problem. They will have to submit a
report detailing their approach and

findings.

20

Continuous
assessment - 3

Project that requires
analysis and a

presentation + write-up

This project will be based on Unit 3:
Chemistry Principles in Computer
Science. Students will be given a

computer science problem and will
have to apply their knowledge of
chemistry principles to solve the

problem. They will have to submit a
report detailing their approach and

findings.

20

Continuous
assessment - 4

Project that requires
analysis and a

presentation + write-up

This project will be based on Unit 4:
Biology Principles in Computer

Science. Students will be required
to choose a biology principle and

apply it to a computer science
problem. They will have to submit a
report detailing their approach and

findings.

20

Continuous
assessment - 5

Project that requires
analysis and a

presentation + write-up

This assignment will be based on
Unit 5: Earth and Environmental
Science Principles in Computer

Science. Students will be given a
computer science problem and will
have to apply their knowledge of
earth and environmental science
principles to solve the problem.

They will have to submit a report
detailing their approach and

findings.

20

Continuous
assessment - 6

Multiple-choice test This assignment will be based on
Unit 5: Earth and Environmental
Science Principles in Computer

Science. Students will be given a
computer science problem and will
have to apply their knowledge of
earth and environmental science
principles to solve the problem.

They will have to submit a report
detailing their approach and

findings.

10

Text book(s)

1. Principles of Science by Donald E. Simanek and John R. Erickson (Pearson

Education India, 2019)

2. The Sciences: An Integrated Approach by James Trefil and Robert M. Hazen

(published by John Wiley & Sons, latest edition)

Reference book(s)

1. Science Matters: Achieving Scientific Literacy by Robert M. Hazen and James Trefil

(Penguin Random House India, 2017)

2. Science and Technology in World History: An Introduction by James E. McClellan III

and Harold Dorn (Johns Hopkins University Press, 2018)

3. Physics for Scientists and Engineers by Randall D. Knight (published by Pearson,

latest edition)

4. Chemistry: The Central Science by Theodore E. Brown, H. Eugene LeMay, Bruce E.

Bursten, Catherine J. Murphy, and Patrick M. Woodward (published by Pearson,

latest edition)

5. Biology: Concepts and Connections by Neil A. Campbell, Jane B. Reece, Martha R.

Taylor, and Eric J. Simon (published by Pearson, latest edition)

6. Earth Science by Edward J. Tarbuck, Frederick K. Lutgens, and Dennis Tasa

(published by Pearson, latest edition)

7. Research Methods in Computer Science by E. Lesk (published by Springer, latest

edition)

Computer Organization & Architecture

Introduction

This course provides an introduction to computer organization and architecture, which deals

with the physical components of a computer system and how they work together to execute

instructions. Topics covered include CPU design, memory hierarchy, I/O systems, and

assembly language programming.

Course outcomes

At the end of this course, students will be able:

1. To explain the basic components of computer systems and their functions at a low

level, including CPU, memory, and I/O systems.

2. To analyze the performance of computer systems based on metrics such as clock

rate and CPI.

3. To design and implement simple CPU and memory systems using hardware

description languages such as Verilog.

4. To write and debug assembly language programs that interact with system hardware.

5. To evaluate the trade-offs involved in different design choices for computer systems,

such as the size of the instruction set or the level of parallelism.

6. To apply knowledge of computer organization and architecture to optimize code for

performance and minimize energy consumption.

Syllabus

Unit I

Basic functional blocks of a computer: CPU, memory, input-output subsystems, control unit.

Instruction set architecture of a CPU - registers, instruction execution cycle, RTL

interpretation of instructions, addressing modes, instruction set. Case study - instruction sets

of some common CPUs.

Unit II

Data representation: signed number representation, fixed and floating point representations,

character representation. Computer arithmetic - integer addition and subtraction, ripple carry

adder, carry look-ahead adder, etc. multiplication - shift-and-add, Booth multiplier, carry save

multiplier, etc. Division - non-restoring and restoring techniques, floating point arithmetic.

Unit III

CPU control unit design: hardwired and micro-programmed design approaches, Case study -

design of a simple hypothetical CPU.

Memory system design: semiconductor memory technologies, memory organization.

Unit IV

Peripheral devices and their characteristics: Input-output subsystems, I/O transfers -

program controlled, interrupt driven and DMA, privileged and non-privileged instructions,

software interrupts and exceptions. Programs and processes - role of interrupts in process

state transitions.

Performance enhancement techniques

Unit V

Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards.

Memory organization: Memory interleaving, concept of hierarchical memory organization,

cache memory, cache size vs block size, mapping functions, replacement algorithms, write

policy.

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Multiple-choice test,
online

This assessment could cover the
instruction set architecture of a

CPU, including registers,
addressing modes, and

instruction execution cycle.

20

Continuous
assessment - 2

Project-based This assessment could ask
students to design a simple

hypothetical CPU using either a
hardwired or micro-programmed

approach. This could be a
project-based assignment where

students submit code or a
detailed design document.

20

Continuous
assessment - 3

Multiple-choice test,
online

This can be a test of students’
understanding of Computer

Arithmetic.

20

Continuous
assessment - 4

Project-based This assessment could ask
students to design a memory
system using semiconductor

memory technologies, including
memory organization and cache

20

memory. This could be a project-
based assignment where
students submit code or a
detailed design document.

Continuous
assessment - 5

Project-based This assessment could ask
students to work in groups to

research and present on different
performance enhancement

techniques, including pipelining
and memory organization. The
project could involve creating a

presentation or a demo to
showcase their understanding of

the concepts.

20

Text book(s)

Computer Organization and Design; Patterson; Elsevier; 6th edition

Reference book(s)

1. Computer Architecture, Berhooz Parhami; Oxford University Press (19 April 2012)

2. Computer System Architecture; Mano M Morris; Pearson 3rd edition

Formal Language & Automata Theory

Introduction

Formal language and automata theory is a branch of computer science that studies the

theoretical foundation of computer science, including the formal languages that computers

can recognize and the automata that can recognize those languages. This course is

designed to give students an understanding of formal languages, grammars, and automata,

and how to use them to solve practical problems.

Course outcomes

At the end of this course, students will be able:

1. To identify the regular and context-free languages that a given automaton can

recognize.

2. To design regular expressions and context-free grammars for given languages.

3. To construct finite automata, pushdown automata, and Turing machines to recognize

given languages.

4. To analyze the time and space complexity of algorithms that operate on formal

languages.

5. To apply the principles of formal languages and automata to real-world problems,

such as pattern matching and parsing.

6. To evaluate and critique different models of computation and their relative strengths

and weaknesses.

Syllabus

Unit 1 Automata methods and Finite Automata

Introduction to formal proof, Additional forms of proof, Inductive proofs, The central concepts

of Automata theory, Deterministic finite automata, Nondeterministic finite automata, Text

search, Finite automata with Epsilon transitions

Unit 2– Regular expressions and languages

Regular expressions, Applications, Algebraic laws for regular expressions, Proving

languages not to be regular, Closure properties of regular languages, Decision properties,

Equivalence and minimization

Unit 3 Context free Grammar and Languages

Context free grammar, Parse trees, Applications, Ambiguity

Unit 4 Pushdown Automata

The languages of a PDA, Equivalance of PDA and CFG, Deterministic PDA

Unit 5 Intro to Turing machines

Problems that computers cannot solve, The Turing machine, Programming techniques for

Turing machine, Extensions to the basic Turing machine

Unit 6 Undecidability and Intractable problems

P and NP, NP-complete problem, A restricted satisfiability problem, Additional NP-complete

problems,

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Multiple-choice test,
online

This assessment could cover
concepts such as deterministic

and non-deterministic finite
automata, the text search

algorithm, and finite automata
with Epsilon transitions.

30

Continuous
assessment - 2

Project-based This assessment could involve
students implementing regular

expressions to solve a real-world
problem, such as pattern

matching in text files.

40

Continuous
assessment - 3

Multiple-choice test,
online

 This assessment could be a
comprehensive exam covering all
the topics covered in the course,
with a focus on Turing machines

and undecidability.

30

Text book(s)

Automata Theory Language & Computation; Hopcraft; Pearson 3rd edition

Reference book(s)

1. Theory of Computer Science: Automata, Languages and Computation; KLP Mishra;

Prentice Hall India Learning Private Limited; 3rd edition

2. Switching and Finite Automata Theory; Jha; Cambridge University Press; South

Asian edition (8 June 2010)

Design & Analysis of Algorithms

Introduction

This course provides an in-depth understanding of fundamental algorithms, algorithm design

techniques, and algorithm analysis. Students will gain experience in designing and analyzing

algorithms, which will help them solve computational problems more efficiently.

Course outcomes

At the end of this course, students will be able:

1. To apply algorithmic problem-solving techniques using a variety of algorithm design

methods.

2. To analyze the time and space complexity of algorithms and compare the efficiency

of different algorithms for the same problem.

3. To select appropriate data structures to optimize algorithms for specific problems.

4. To demonstrate proficiency in dynamic programming, greedy algorithms, and other

classical algorithmic techniques.

5. To apply algorithmic solutions to real-world problems and evaluate the quality of the

solution.

6. To analyze the limitations and challenges of algorithms in various contexts and

assess the ethical implications of algorithm design.

Syllabus

Unit I - Fundamentals of Algorithms and mathematics

Problem, algorithm definitions, Mathematics for algorithmic sets, Functions and relations,

Combinations, Vectors and matrices, Linear inequalities and linear equations

Unit II - Analysis of Algorithms

Orders of Magnitude (Asymptotic notations) Growth rates, some common bounds (constant,

logarithmic, linear, polynomial, exponential) Average and worst case analysis

Analysing control statements Recurrence Relations- substitution, change of variables,

master’s method

Unit III - Sorting and searching algorithms

Selection sort, bubble sort, insertion sort Sorting in linear time, count sort Linear search

Unit IV - Divide and conquer algorithms

Quick sort, worst and average case complexity, Merge sort Matrix multiplication, Binary

search, Binary search tree

Unit V - Greedy algorithms

General characteristics, Problem solving using Greedy methods, Activity selection problem,

MST, The Knapskack problem

Unit VI - String matching

The naive string matching algorithm, The Rabin-Karp algorithm, String Matching with infinite

automata

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Coding test Students could be given a
programming problem related to
sorting and searching algorithms,
such as implementing quicksort
or binary search. They would be
expected to write efficient and

correct code.

20

Continuous
assessment - 2

Coding test Students could be given a
programming problem related to
dynamic programming or greedy
algorithms, such as the knapsack
problem or coin change problem.
They would be expected to write

efficient and correct code.

20

Continuous
assessment - 3

Coding test Students could be given a
programming problem related to

string matching or graph
algorithms, such as finding the

shortest path between two nodes
or implementing the Rabin-Karp

algorithm. They would be
expected to write efficient and

correct code.

20

Continuous
assessment - 4

Algorithm analysis Students could be given a set of
algorithms and asked to analyze
their time complexity using Big-O

notation. They would need to
demonstrate an understanding of

20

how to analyze algorithms and
express their complexity using the

appropriate notation.

Continuous
assessment - 5

Case study analysis Students could be given a real-
world problem related to

algorithms, such as optimizing a
transportation network or

scheduling appointments for a
medical facility. They would be

expected to analyze the problem
and propose an algorithmic

solution, including a description of
the algorithm, its time complexity,

and any trade-offs involved.

20

Text book(s)

Design And Analysis Of Algorithms; S Sridhar; Oxford University Press; 2014 edition

Reference book(s)

1. "The Design of Approximation Algorithms" by David P. Williamson and David B.

Shmoys (Cambridge University Press, 2010)

2. "Computational Complexity: A Modern Approach" by Sanjeev Arora and Boaz Barak

(Cambridge University Press, 2009)

Semester 6

Discovering Self

Introduction

Discovering Self is a course designed to help students explore and develop their personal

identity, emotional intelligence, and communication skills. Through a variety of activities and

exercises, students will gain insights into their own strengths and weaknesses, and develop

strategies for personal growth and development.

Course outcomes

At the end of this course, students will be able:

1. To develop self-awareness and introspection skills

2. To understand the importance of emotional intelligence and its role in personal and

professional life

3. To learn effective communication skills to express thoughts, ideas, and emotions

4. To develop problem-solving and decision-making skills

5. To discover personal strengths and weaknesses, and strategies for personal growth

and development

6. To understand the impact of personal values and beliefs on decision-making and

behavior

Syllabus

Unit 1: Self-awareness and Introspection

Definition and importance of self-awareness; Techniques for introspection and self-reflection;

Identifying personal values, beliefs, and biases; Understanding emotions and their impact on

behavior; Developing self-compassion and self-acceptance

Unit 2: Emotional Intelligence

Definition and importance of emotional intelligence; Understanding emotions and their role in

communication; Developing empathy and social awareness; Managing emotions and stress;

Developing emotional regulation and resilience

Unit 3: Effective Communication

Definition and importance of effective communication; Verbal and nonverbal communication

skills;

Active listening and responding skills; Overcoming communication barriers; Developing

assertiveness and conflict resolution skills

Unit 4: Problem Solving and Decision Making

Definition and importance of problem solving and decision making; Analyzing problems and

identifying root causes; Generating and evaluating alternative solutions; Making effective

decisions; Implementing and evaluating decisions

Unit 5: Personal Growth and Development

Definition and importance of personal growth and development; Identifying personal

strengths and weaknesses; Developing strategies for personal growth and development;

Setting goals and creating action plans; Cultivating a growth mindset

Unit 6: Values and Beliefs

Understanding personal values and beliefs; Identifying how values and beliefs impact

decision-making and behavior; Developing an ethical framework for decision-making;

Understanding and respecting cultural differences; Managing cognitive biases and heuristics

Assessment plan

Assessment
component

Details of the
assessment

Additional details, if any Weightage %

Continuous
assessment - 1

Personal reflection
paper

Students will write a personal
reflection paper on their self-
awareness and introspection
journey. The paper should be

based on their experiences with
techniques for introspection and
self-reflection, as well as their
identified values, beliefs, and

biases.

20

Continuous
assessment - 2

Emotional intelligence
case study

Students will be given a case study
related to emotional intelligence
and will have to analyze it and

provide a solution. The case study
will focus on managing emotions
and stress, developing emotional

regulation and resilience, and
developing empathy and social

awareness.

20

Continuous
assessment - 3

Communication project Students will work on a
communication project that includes

verbal and nonverbal
communication skills, active

listening and responding skills, and
overcoming communication

barriers. The project should include
a presentation or a video

showcasing their communication
skills.

20

Continuous
assessment - 4

Decision making
simulation

Students will be given a problem-
solving and decision-making

simulation where they will have to
analyze problems, identify root
causes, generate and evaluate
alternative solutions, and make

effective decisions. The simulation
will be designed to mimic real-world

20

scenarios.

Continuous
assessment - 5

Personal growth plan Students will develop a personal
growth plan that includes identifying

personal strengths and
weaknesses, developing strategies

for personal growth and
development, setting goals, and
creating action plans. The plan

should be based on the concepts
learned in the course and should be

tailored to the student's individual
needs and aspirations.

20

Text book(s)

Emotional Intelligence 2.0 by Travis Bradberry and Jean Greaves, TalentSmart (2015)

Reference book(s)

1. Crucial Conversations: Tools for Talking When Stakes Are High by Kerry Patterson,

Joseph Grenny, Ron McMillan, and Al Switzler, McGraw-Hill Education (2011)

2. The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change by

Stephen R. Covey, Simon & Schuster (2013)

3. Mindset: The New Psychology of Success by Carol S. Dweck, Ballantine Books

(2007)

4. Thinking, Fast and Slow by Daniel Kahneman, Farrar, Straus and Giroux (2011)

Fundamentals of Business Management

Introduction

This course provides an introduction to the key principles and practices of modern business

management. It is designed to equip students with the foundational knowledge and skills

needed to manage people, resources, and processes effectively, and to develop a strategic

mindset that enables them to make sound business decisions in a dynamic and complex

environment.

Course outcomes

At the end of this course, students will be able:

1. To understand the fundamental concepts and principles of modern business

management, including organizational structures, functions, and processes.

2. To develop a strong foundation in core business disciplines, such as accounting,

finance, marketing, and operations management.

3. To acquire the necessary knowledge and skills to manage people effectively,

including leadership, motivation, and communication.

4. To understand the importance of strategic thinking and planning in business

management, and to develop the ability to formulate and execute effective business

strategies.

5. To learn to manage resources efficiently and effectively, including financial,

technological, and human resources.

6. To develop critical thinking and problem-solving skills, and to apply them in real-world

business scenarios.

Syllabus

Unit 1: Introduction to business management and Marketing

How business operate, Branding, customer centricity, Go-to market strategies, different

modes of marketing

Unit 2: Financial Accounting

Balance sheet, Accrual accounting, Income sheet, Cash flows, Ratio analysis

Unit 3: Managing social and human capital

Motivation and reward, Tasks, jobs and system of work, Making good & timely decisions,

Designing and changing the organization’s architecture

Unit 4: Background to Entrepreneurship

Theories of entrepreneurship, Activity scope and role in modern society, The effects of

entrepreneurial activity on economic systems, contributions and benefits of entrepreneurial

activity, Entrepreneurship in Oman. Problems faced by small firms, types of entrepreneurs

and innovators.

Unit 5: The Entrepreneur

The individual in terms of psychology, personality and trait theories; The individual in terms

of motivation and achievement theories; The individual in terms of behaviour and

characteristics theories; Differentiated entrepreneur typologies.

Unit 6: Conceiving a Business Idea and Creating a Business Plan

Business Idea - Models for new ventures, idea generation, screening ideas, business

analysis, and feasibility studies.

Business Plan - Purpose and benefits, design of a business plan, layout and content,

focused recipient, approaching potential investors.

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Multiple-choice A quiz testing the concepts of
business learned

20

Continuous
assessment - 2

Case-study analysis Provide a case study of a real
business and ask students to

analyze the business
management and marketing

20

strategies used. Students should
identify key challenges,

successes, and areas for
improvement.

Continuous
assessment - 3

Financial statement
analysis

Provide financial statements for a
hypothetical business and ask

students to analyze the
company's financial health using
ratio analysis. Students should

identify strengths and
weaknesses of the company's

financial position and make
recommendations for

improvement.

20

Continuous
assessment - 4

Business plan proposal Ask students to identify a
potential entrepreneurial

opportunity and create a business
plan for a new venture. The plan
should include a market analysis,

financial projections, and an
overview of the proposed

business model.

20

Continuous
assessment - 5

Project-based Students to identify a potential
entrepreneurial opportunity and
create a business plan for a new
venture. The plan should include

a market analysis, financial
projections, and an overview of
the proposed business model.

20

Text book(s)

1. "Principles of Management" by Peter F. Drucker (HarperCollins, 2017)

2. "Fundamentals of Management" by Stephen P. Robbins and David A. DeCenzo

(Pearson, 2017)

Reference book(s)

1. "The Lean Startup" by Eric Ries (Crown Business, 2011)

2. "Blue Ocean Strategy" by W. Chan Kim and Renée Mauborgne (Harvard Business

Review Press, 2015)

3. "The 7 Habits of Highly Effective People" by Stephen R. Covey (Simon & Schuster,

2013)

4. "Good to Great" by Jim Collins (Harper Business, 2001)

Compiler Design

Introduction

The Compiler Design course is designed to teach students the principles and techniques

used in building compilers for programming languages. Students will learn how compilers

work and how to build a simple compiler from scratch.

Course outcomes

At the end of this course, students will be able:

1. To apply the principles of formal language and automata theory in building compilers

for programming languages.

2. To design and implement the lexical analyzer and parser for a programming

language.

3. To generate intermediate code from source code using different techniques.

4. To optimize code generation using various optimization techniques.

5. To implement error handling and debugging mechanisms in a compiler.

6. To evaluate and compare different compiler design and optimization techniques.

Syllabus

Unit 1 Introduction and Directed Translator

Language processors, Structure of a compiler, Evolution of programming languages, The

science of building a compiler, Applications of computer technology, Syntax – Directed

translation, Parsing, A translator for simple expressions, Lexical analysis, Symbol tables,

Intermediate code generation

Unit 2 - Lexical analysis

The role of lexical analyzer, Input buffering, Tokens, Lexical-Analyzer generator, Finite

Automata, Design of a lexical-analyzer generator

Unit 3 - Syntax analysis

The role of parser, Context-free grammar, Writing a grammar, Top-down parsing, Bottom-up

parsing, LR parsing, Parser generators

Unit 4 Syntax directed translation

Evaluation order for SDDs, Applications, Schemes, Implementing L-attributed SDDs

Unit 5 Intermediate Code Generation

Variations of syntax trees, Three address code, Types and declaration, Translation of

expressions, Type checking, Control flow, Backpatching, Switch statements

Unit 6 Run time environments

Issues in the design of a code generator, The target language, Addresses in the target code,

Basic blocks and flow graphs, Optimization of basic blocks, A simple code generator,

Peephole optimization, Dynamic Programming code-generation

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Subjective, online Students are given a context-free
grammar and asked to write a
parser for it using a parsing

algorithm of their choice (e.g.,
LL(1), LR(1), etc.). They would be

evaluated based on the
correctness and efficiency of their

parser.

25

Continuous
assessment - 2

Subjective, online Students are given a small
program and asked to optimize its
intermediate code. They would be
evaluated based on the quality of
their optimization (e.g., number of
instructions reduced, execution

time improved, etc.).

25

Continuous
assessment - 3

Multiple-choice Students take a quiz on the
concepts related to symbol

tables, such as scope, binding,
and lifetime.

25

Continuous
assessment - 4

Project-based Students will work on a project
that demonstrates their

understanding of compiler design
principles and techniques. The
project could involve designing

and implementing a compiler for a
simple programming language, or
extending the functionality of an
existing compiler. The project
should include a written report

that explains the design choices
made and the implementation

details, as well as a
demonstration of the working
compiler. The project will be

evaluated based on the quality of
the design, implementation, and

documentation.

25

Text book(s)

Compilers: Principles Techniques and Tool; Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry

D. Ullman; Pearson 2nd edition

Reference book(s)

1. "Engineering a Compiler" by Keith D. Cooper and Linda Torczon (2nd Edition, 2011,

Morgan Kaufmann)

2. "Modern Compiler Implementation in Java" by Andrew W. Appel (2nd Edition, 2002,

Cambridge University Press)

3. "Introduction to Compiler Construction" by Thomas W. Parsons (2001, Addison-

Wesley)

4. "Language Implementation Patterns: Create Your Own Domain-Specific and General

Programming Languages" by Terence Parr (2010, Pragmatic Bookshelf)

5. "Writing Compilers and Interpreters: A Software Engineering Approach" by Ronald

Mak (3rd Edition, 2009, Wiley)

Computer Networks

Introduction

This course will cover the fundamental concepts and principles of computer networks,

including network architecture, protocols, and services. Students will learn about various

network technologies, such as LAN, WAN, and wireless networks, and their applications in

different contexts. The course will also address network security and management issues.

Course outcomes

At the end of this course, students will be able:

1. To identify the different components and layers of computer networks.

2. To explain the functions of different protocols used in computer networks.

3. To analyze the performance and limitations of different network architectures.

4. To design and implement basic network configurations using routers and switches.

5. To troubleshoot common network issues using various network analysis tools.

6. To evaluate the security concerns and design solutions to ensure network security.

Syllabus

Unit 1 Internetworking and Routing

Internet architecture, Unicast IP Forwarding and Routing, Internet Routing in-the-Wild

(Measurement), Big Fast Routers, Security Issues in the Internet Architecture, Robustness

Unit 2 – Resource Management

End-to-End Congestion Control, Router-Assisted Congestion Control, Active Queue

Management, and Scheduling, Modeling and Measurement, Adaptive Applications and

Internet QoS

Unit 3– Network Services

Wireless/Mobile Networking, Naming: DNS, Peer-to-Peer Networking, Distributed Hash

Tables, Overlay Routing, Multicast, Network Protection, Reliable Transport and Congestion

Control, Unicast Routing, Adaptive and Network-Aware Applications, Traffic Engineering,

Flow Modeling, Wireless Protocols, Naming, Web Caching

Assessment plan

Assessment
component

Assessment type Details Weightage
%

Continuous
assessment - 1

Objective Multiple-choice quiz on unit 1 25

Continuous
assessment - 2

Project-based Students are assigned to work in
groups and simulate a computer

network using a network
simulator tool, such as GNS3 or

Packet Tracer. Students can
design and implement a network
topology that reflects the topics

covered in the course. The
project can include configuring

routers and switches,
implementing routing protocols,

and testing the network for
security, reliability, and

performance.

25

Continuous
assessment - 3

Project-based Students are asked to conduct
research on a particular topic

related to computer networks and
present their findings to the class.

For example, students can
research the latest advances in

wireless protocols or analyze the
benefits and drawbacks of

different routing protocols. The
research project can be in the

form of a presentation or a written
report.

25

Continuous
assessment - 4

Project-based Students are asked to design a
computer network that meets

specific requirements, such as
high availability, security, and

scalability. The project can
include designing network

topology, selecting hardware and
software components, and
configuring the network for

different services and
applications. Students can

present their designs to the class
and receive feedback from their

peers and the instructor.

25

Text book(s)

1. A S Tanenbaum, Computer Networks, 5th Ed., Pearson, 2010.

2. B.A. Forouzan, TCP/IP Protocol Suite, 4th Ed., TMH, 2010.

Reference book(s)

1. TCP/IP illustrated, Volume 1: The Protocols, W.R. Stevens, 2nd Ed., Addison-

Wesley, 2015.

2. Internetworking with TCP/IP Principles, Protocols and Architecture, D E. Comer, 6th

Ed., Pearson, 2013.

Semester 7

Introduction to Philosophy

Introduction

In this course, students will be introduced to fundamental concepts in philosophy such as

logic, ethics, epistemology, metaphysics, and aesthetics. They will learn about the major

philosophical ideas of historical and contemporary thinkers and explore various philosophical

arguments.

Course outcomes

At the end of this course, students will be able:

1. To identify and explain the major philosophical concepts and ideas.

2. To analyze and evaluate philosophical arguments.

3. To develop the ability to think critically and creatively about philosophical problems.

4. To apply philosophical theories and concepts to real-world situations.

5. To engage in philosophical discussions and debates with peers.

6. To appreciate the relevance of philosophy to personal and professional life.

Syllabus

Unit 1: Morality

The status of morality, Objectivism, Relativism, Emotivism

Unit 2: What is knowledge?

The basic constituents of knowledge, the classical account of knowledge, The Gettier

problem, Choices

Unit 3: Free will

Determinism, Libetarianism, Compatabilism, Hard determinism, Free will and do we have it?

Unit 4: Obligation to obey the law

The grounds of political obligation, Consent, Fairness, Gratitude and Benefit

Unit 5: Should you believe what you hear?

Reid’s challenge to Hume, Reid’s Argument, Enlightenment, Intellectual Autonomy

Assessment plan

Assessment component Assessment type Weightage
%

Continuous assessment - 1 Case-study analysis and presentation 20

Continuous assessment - 2 Case-study analysis and presentation 20

Continuous assessment - 3 Case-study analysis and presentation 20

Continuous assessment - 4 Case-study analysis and presentation 20

Continuous assessment - 5 Case-study analysis and presentation 20

Text book(s)

Philosophy Made Slightly Less Difficult; Garrett J. Deweese & J. P. Moreland; IVP

Academic; Second edition

Reference book(s)

1. The Big Questions: A Short Introduction to Philosophy by Robert C. Solomon and

Kathleen M. Higgins, published by Wadsworth Publishing (2011).

2. Think: A Compelling Introduction to Philosophy by Simon Blackburn, published by

Oxford University Press (2001).

3. Philosophy: The Basics by Nigel Warburton, published by Routledge (2012).

4. The Story of Philosophy by Will Durant, published by Pocket Books (1991).

5. An Introduction to Indian Philosophy; Satishchandra Chatterjee; Rupa & Co 2012

edition

Electives

This forthcoming section of the doc contains a tentative list of courses offered (not a detailed

syllabus) for the electives.

Academic Elective #1

1. Cloud computing

2. Distributed systems

3. Data Mining and Warehousing

Academic Elective #2

1. Cryptography

2. Internet of Things

3. System Design

Foundation Elective

1. Human Mind and Behaviour

2. Organization Behaviour

3. Foreign language (Global options provided such as French/ Spanish/ German/

Japanese etc.)

4. Design Thinking 101

Semester 8

Skilling Elective

1. Unix Shell Programming

2. AWS and AWS Security

3. Data Modeling and Visualization

Assessment plan for Integrated Work

During semesters 3 through 8, students participate in Integrated Work with partner

companies. This refers to paid remote internships with tech recruiters. This goes on to

provide students with valuable real-world experience and industry immersion, that will help

them gain miles in their eventual graduation outcomes, far ahead of their peers in other

programs.

Credits are allocated to Integrated Work each semester, and the evaluation schema is as

follows.

Plan to track Progress

During the internship the student will report plans and progress in written and oral form.

These will be assessed formative.

Progress Report

During the course of the internship, the student has to submit fortnightly reports detailing

their progress for the month on the internship. This should cover:

● Analysis of the work done at the organization

● Learnings thus far

● Challenges faced in the fortnight with proposed solutions

This is evaluated by a supervisor mentor from Kalvium, and suitable feedback/ support is

provided.

Internship Report

After the internship, the student has to hand in his/her internship report before a

predetermined deadline. This report consists of the following.

● Analysis of the project done at the organization (matter-of-fact description of the work

carried out)

● Analysis and reflection of the learning process (this involves the progress in learning

over six months of the integrated work. This may include general as well as personal

competency-level learnings).

Internship Presentation

After handing in his/her report, the student presents his/her internship report to a panel. This

panel consists of unbiased assessors (not the supervising mentor) The supervising mentor

may also attend the internship presentation.

An assessment lasts one hour, consisting of a presentation of the student’s internship work

(30 minutes), and a question round (30 minutes).

Assessment Methodology

The following will be provided as weightages for evaluating a student’s performance in this

stint of Integrated Work.

● Evaluation of the Progress Report by the supervising mentor (20%)

● Evaluation of the Internship Report/ Presentation by the panel (20%)

● Monthly Performance rating (weighted average) by the supervising manager from the

company (60%)

The monthly ratings could be based on various aspects of the student's performance such

as punctuality, professionalism, quality of work, ability to meet deadlines, willingness to

learn, and collaboration with team members.

